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Abstract

In text summarization, extractivity is defined
as a measurement of the degree of overlap be-
tween a source document and its summary. Pre-
vious research has shown that the extractivity
level of training data can influence both output
extractivity and the amount of factual informa-
tion (i.e. faithfulness) in outputs for abstractive
summarization. However, it remains unclear if
and how extractivity impacts the performance
of abstractive models. In this work, we investi-
gate the relationship between dataset extractiv-
ity and model performance by comparing the
performance of trained models under different
degrees of extractivity. We find that while low
levels of extractivity can improve performance,
as extractivity increases, performance is nega-
tively impacted. Furthermore, through an anal-
ysis of the model’s copy continuity of content,
we discover that higher extractivity leads to a
greater tendency for the model to copy text con-
tinuously from the source document rather than
identifying and summarizing important content
that should be covered in the target summary.
To address these issues, we propose a simple
and effective method to design copy labels for
fixing the model’s copying behaviors and train
the model with a copy mechanism. The experi-
mental results illustrate the effectiveness of our
strategy in alleviating the negative impact on
model performance resulting from high dataset
extractivity, and that our method outperforms
several competitive baselines.

1 Introduction

Text summarization is the task of reducing the con-
tent of an original text while preserving its salient
content (Gupta and Gupta, 2019). A multitude of
techniques to generate summaries exists, which can
be categorized into extractive and abstractive ap-
proaches. With extractive techniques, a summary is
generated by extracting salient sentences from the
text (Kasture et al., 2014). With abstractive tech-
niques, new sentences or commonly called para-

phrased sentences are generated so that the result-
ing summaries contain new words and expressions
that do not occur in the original text (Widyassari
et al., 2020).

In addition to the extractivity for summarization
models, previous work has proposed the idea of
extractivity for summarization datasets specifically
in terms of the summarization styles in datasets
(Grusky et al., 2018). More specifically, extractiv-
ity is a metric meant to capture the overlap between
a text and its summary, and quantifies the extent to
which a summary is a derivative of a text.

Summarization datasets typically contain
aligned pairs of texts and human-generated
or human verified summaries. As an intrinsic
property of summarization datasets, extractivity
has been shown to influence various characteristics
of output summaries, such as output extractivity
(See et al., 2017; Zhang et al., 2018a) and the
amount of factual information (i.e. faithfulness)
(Ladhak et al., 2022). Generally, datasets with
high extractivity are treated as suboptimal for ab-
stractive summarization (Bommasani and Cardie,
2020), but there has been a lack of systematic
research investigating the relationship between
the magnitude of extractivity in training datasets
and the performance of abstractive summarization
models.

To address the lack of understanding about the
relationship between extractivity in summarization
training data and the performance of abstractive
summarization models, in this work, we first de-
velop a framework for evaluating the change in
model performance over baseline models (control)
at three levels of amount of extractivity. Specifi-
cally, we split the training data into different sub-
sets based on their increasing extractivity and then
train the control models on each resulting subset.
By comparing the results, we find that as the extrac-
tivity in training data increases, model performance
initially improves with increasing extractivity but



then drops when extractivity is too high. This nat-
urally raises the next question, which we also ad-
dress in this paper: Why and how does extractivity
cause model performance to change?

Based on our observations, we posit that high
extractivity in training data can lead to an in-
creased likelihood of overfitting an abstractive
model whereby the model continuously copies
from source documents. To validate this hypothe-
sis, we propose new metrics to measure how much
content in output summaries is copied continuously
from a source text, and how important this continu-
ously copied content is by comparing it with target
summaries. We apply these metrics to outputs from
the control models defined above. The results sup-
port our hypothesis ahd provide a new direction for
mitigating the negative effects of high extractivity
by promoting the selection of truly important con-
tent that is covered in target summaries for copying.

Through our analysis, we have identified a pri-
mary harm associated with highly extractive train-
ing data, namely the propensity for models to ex-
cessively rely on continuous copying rather than
focusing on the essential content that should be
included in summaries. To alleviate this potential
harm, we propose and test a simple and effective
strategy based on a copy mechanism (See et al.,
2017). Our solution first identifies the salient parts
in a source document that the model should copy
into the summary. We do this by solving an integer
linear programming. We then create ground-truth
labels based on the optimal solution for the copy
distribution, with the goal of guiding the model
to focus on the content it should copy rather than
blindly copying continuous text spans from the
source document. Lastly, we incorporate this copy
mechanism into BART and train it with an aux-
iliary loss based on the copy distribution and the
constructed copy labels. The experimental results
demonstrate that our method not only is effective
in mitigating the negative effects of high extractiv-
ity, but can also improve model performance as it
outperformed several recent competitive baselines.

In general, we aim to explore and answer the
following research questions in this work:
• RQ1 How does dataset extractivity impact the

performance of abstractive summarization models?
(Section 2)

• RQ2 How does dataset extractivity cause the
performance of abstractive models to change? (Sec-
tion 3)

• RQ3 For cases when dataset extractivity hurts
model performance, how can we mitigate this neg-
ative impact? (Section 4)

2 Extractivity Analysis

In this section, we introduce our research design,
following a similar process as Ladhak et al. (2022),
to answer our first research question: How does the
extractivity in summarization datasets influence the
performance of abstractive models?

2.1 Datasets and Extractivity

We selected two popular summarization datasets,
one from the domain of news (i.e. CNN/DM) and
one from academic publishing (i.e. arXiv/Pubmed).
We opted for these two datasets as they are similar
in size and dataset extractivity, and thus would war-
rant a fair comparison:
CNN/DM (Hermann et al., 2015; Nallapati et al.,
2016) is a dataset of news articles from CNN and
Daily Mail. The summaries are formed from high-
lighted bullet points. There are 311,971 document
- summary pairs in the dataset.
arXiv/PubMed (Cohan et al., 2018) contains
346,187 papers from arXiv and PubMed. This
dataset consists of the processed full text of papers
as input documents, and the abstracts are used as
summaries of the papers.

We used the common measurements of extractiv-
ity detailed in Grusky et al. (2018), and specifically
chose extractive fragment coverage as Ladhak et al.
(2022). Specifically, coverage calculates the per-
centage of words in a summary that are from the
source document. The higher the coverage of the
summary, the higher the overlap of the summary
with the source article.

2.2 Models and Performance Metrics

We focused on two widely-used baselines:
BART (Lewis et al., 2020) is a Transformer-based
denoising autoencoder for pre-training seq2seq
tasks including both natural language understand-
ing and generation tasks.
PEGASUS (Zhang et al., 2020) is a Transformer-
based encoder-decoder model pre-trained with a
new objective function by generating removed im-
portant sentences from the remaining sentences.

Following existing work, ROUGE (Lin, 2004)
and BERTScore (Zhang et al., 2019) are used as
our performance metrics to evaluate models.



Dataset DE BART PEGASUS

OE R1 R2 RL BERTScore OE R1 R2 RL BERTScore

CNN/DM

full 86.41 94.89 44.12 21.21 40.86 34.85 93.41 44.15 21.41 41.02 34.98
T1 70.96 89.71 40.80 18.17 37.65 30.43 90.14 43.14 19.84 40.01 33.73
T2 83.08 93.26 43.18 20.18 40.05 33.60 92.77 44.01 20.83 40.89 34.60
T3 92.01 96.48 38.50 16.45 35.22 27.31 95.25 43.37 20.74 40.24 34.00

arXiv/PubMed

full 93.64 88.20 45.81 18.15 41.57 23.89 89.11 45.20 18.93 41.83 23.96
T1 78.66 85.92 44.32 17.10 39.93 22.32 87.44 43.44 17.42 39.26 22.98
T2 92.11 88.18 45.48 17.95 40.88 23.34 88.80 44.90 18.25 41.10 23.73
T3 96.37 88.59 44.03 16.91 39.53 22.10 89.73 43.14 16.98 39.66 22.40

Table 1: Empirical results of model performance under different level extractivity. DE and OE denote dataset
extractivity and output extractivity, respectively, which correspond to the extractivity calculated for training data or
model outputs. T1, T2, and T3 represent the triplet subsets we split.

2.3 Extractivity-Performance Trade-off

To examine the relationship between dataset ex-
tractivity and model performance, we first fine-
tuned models on training data with different levels
of extractivity. We then evaluated these models
with the same test data to explore the extractivity-
performance trade-off and further investigated how
dataset extractivity influences model performance.

Specifically, we split the training data into three
equally-sized subsets by computing the coverage
values for all data instances and sorting the training
data based on these values. For each subsets, we
fine-tuned a separate model with the corresponding
level of extractivity, resulting in three fine-tuned
models. We call each of these trained models a
triplet model. In addition, we fine-tuned a model
on the full training data for comparison.

2.3.1 Results and Analysis

The results are presented in Table 1. By compar-
ing the outputs from triplet models, we learn that
the extractivity of output summaries increases as
the extractivity of training data increases. This
aligns with previous empirical findings where lim-
ited abstractivity was shown in abstractive systems
trained on highly extractive datasets (See et al.,
2017; Zhang et al., 2018b). Overall, it is evident
that dataset extractivity does indeed influence the
extractivity of output summaries in trained abstrac-
tive models. It is therefore worthwhile to investi-
gate the potential impact of dataset extractivity on
model performance.

More importantly, we observed for both train-
ing datasets that as the extractivity in training data
increases, a similar pattern in changes in perfor-
mance metrics as per BART and PEGASUS occurs:

model performance initially improves but subse-
quently drops when dataset extractivity goes too
high. By too high, we mean that there may exist
a certain threshold for extractivity, and once the
extractivity surpasses this threshold, a subsequent
decline in model performance may be observed.
However, the magnitude of the performance gap be-
tween the metrics varies for different model-dataset
pairs. This suggests that the impact of dataset ex-
tractivity on model performance depends on the
degree of extractivity in training data. As different
summarization datasets may have various degrees
of extractivity (Bommasani and Cardie, 2020), a
detailed analysis is required to understand how this
impact may bring changes to model performance
and identify potential solutions to mitigate its nega-
tive effects on model performance. We provide this
analysis next.

3 Continuity Analysis

Now that we have reached the conclusion that high
extractivity can negatively influence abstractive
model performance, our our second question to
answer is: How does dataset extractivity cause the
performance of abstractive models to change?

After examining the model outputs, we formed
a plausible hypothesis: extractivity could lead
to an increased tendency or preference for an
abstractive model to copy content continuously,
potentially neglecting the inclusion of important
content that should have been covered in a sum-
mary. To validate this hypothesis, it is necessary to
develop new metrics to measure the continuity and
salience of text spans that are continuously copied
by the model. These metrics can be applied to the
output summaries from all triplet models (as de-



fined in Sec. 2) and the results can be compared to
test the validity of the our hypothesis.

3.1 Characterizing Continuity

We examined the summary continuity at the sen-
tence level using two metrics which we designed
to evaluate the proportion of the text in a summary
that is continuously copied from the source docu-
ment and the importance of these copied texts by
comparing them with the ground-truth summary.

Given a source document to be summarized
X = {x1, x2, · · · , x|X|} consisting of a sequence
of sentences xj and the output summary Ŷ =
{ŷ1, ŷ2, · · · , ŷ|Ŷ |} consisting of sentences ŷi, we

define the set of continuous spans C(X, Ŷ ) as the
text spans in Ŷ that are copied continuously from
X . To obtain these continuous spans, we first iden-
tified whether a sentence in Ŷ is copied from X and
then searched for any index subsets of copied sen-
tences that are continuous. Specifically, for a given
ŷi ∈ Ŷ we calculated its similarity to each xj ∈ X ,
and we marked the most similar xj corresponding
to ŷi as x∗i = argmax

xj∈X
sim(ŷi, xj). Then we set

a threshold t, and if sim(ŷi, x
∗
i ) > t 1 we treated

ŷi as having been copied from x∗i and recorded
the index of x∗i in X as ki ∈ [1, n]. Conversely,
if sim(ŷi, x

∗
i ) < t, we regarded ŷi as not having

been copied from any sentence in X and set ki
to an arbitrary negative number −100. After con-
ducting this process for every ŷi ∈ Ŷ , we got a
sequence of indices K = {k1, k2, · · · , km}, where
ki ∈ −100 ∪ [1, n]. Lastly, we looped through the
sequence K, and obtained all subsequences such
that any non-negative element ki in a subsequence
satisfies ki = ki+1 or ki = ki+1 − 1. For example,
K = {−100, 5, 5, 6, 1} contains a continuous span
{5, 5, 6} and this means the 2-nd to the 4-th sen-
tences in Ŷ are copied from the 5-th and the 6-th
sentences in X continuously. Note that we skipped
subsequences whose first element is equal to the
last element, so K = {−100, 5, 5, 5, 1} does not
contain any continuous span. We also showed this
process in Algorithm 1 and computed two metrics
using C(X, Ŷ ): continuity and continuity salience.

Continuity We definecontinuity as the percent-
age of continuous spans in the output summary and
the ratio is calculated based on sentence counts.

1We used ROUGE-2 as the function sim(., .) and set the
threshold t = 0.6. We tried other threshold values from 0.5
to 0.7 and obtained the same conclusions.

Algorithm 1 Identify Continuous Spans

function C(X, Ŷ , t)
K ← ⊘, j ← 1

for i← 1 to len(Ŷ ) do
max_score← −1, max_idx← −1
for j ← 1 to len(X) do

if sim(ŷi, xj) ≥ max_score then
max_score← sim(ŷi, xj)
max_idx← j

if max_score > t then
K ← K ∪ {max_idx}

else
K ← K ∪ {−100}

C ← ⊘, start_idx← −1, flag ← false
for i← 1 to len(K)− 1 do

if ki = ki+1 − 1 or 0 < ki = ki+1 then
if flag = false then

start_idx← i
flag ← true

else
if flag = true and kstart_idx ̸= ki then

c←< kstart_idx, · · · , ki−1, ki >
C ← C ∪ {c}

return C

We use |.| to represent the sentence count of a se-
quence.

CONT(X, Ŷ ) =
1

|Ŷ |

∑
c∈C(X,Ŷ )

|c|

Continuity Salience To quantify the salience of
continuous spans, we propose continuity salience
to calculate the normalized ROUGE scores2 be-
tween the target summary and the text spans that
a continuous span copies from X . This serves as
an approximation of whether the copied text spans
are important to be included in the summary. We
denoted the target summary as Y and used a map-
ping function g to return the text spans in X that
a continuous span copies from. We used ∥.∥ to
represent the word count of a sequence and AVG
to represent the average function.

CONT SALIENCE(X, Ŷ ) = AVG
c∈C(X,Ŷ )

ROUGE(g(c), Y )

∥c∥

3.2 Evaluating Continuity

We utilized the above-defined continuity and conti-
nuity salience to investigate the potential relation-
ship between increasing dataset extractivity and the
tendency of models to copy text more continuously,
as well as whether the changes in the salience of
continuous spans may contribute to the changes in
model performance.

2We used ROUGE-2 specifically.



Dataset DE BART PEGASUS

Cont Cont Salience Cont Cont Salience

CNN/DM

T1 70.96 10.00 0.057 14.31 0.078
T2 83.08 23.98 0.153 20.11 0.157
T3 92.01 43.68 0.107 34.66 0.107

arXiv/PubMed

T1 78.66 12.22 0.082 21.13 0.105
T2 92.11 25.49 0.125 25.17 0.140
T3 96.37 31.86 0.123 29.91 0.101

Table 2: Empirical results of continuity and continuity salience under different level extractivity. DE denotes dataset
extractivity. T1, T2, and T3 represent the triplet subsets we split.

The results are shown in Table 2. As one might
reasonably expect, for both datasets and models,
the continuity (Cont) increases as the training ex-
tractivity (TE) increases. This basically suggests
that as there are more overlaps between source doc-
uments and corresponding summaries, the model
may learn to copy more directly from a source
document such that the model ignores to include
the truly important content from the source doc-
uments into a summary. This may explain why
there are more continuous spans in the output sum-
maries from the model trained on the dataset with
higher extractivity, as evidenced by higher conti-
nuity scores. Hence, it can be inferred that when
dataset extractivity increases, the model is more
likely to copy, and once it starts to copy it tends to
keep copying the following content.

However, in summarization done by humans,
there is no inherent rule that important content ap-
pearing in a summary usually clusters together in
a source document. As a result, a summary that
contains too many continuous spans might inadver-
tently exclude important content that should have
been included in the summary. This is supported
by our experimental results, which show that as
dataset extractivity increases, continuity salience
first increases and soon decreases. This also aligns
with the change in model performance shown in
Table 1. Based on connecting to previous obser-
vations in Section 2, we conclude that the more
overlaps there are between source documents and
target summaries in training data, the more likely
are trained model to copy content continuously,
which results in low salience in continuous spans
and hurts model performance when dataset extrac-
tivity is excessively high.

4 Mitigating the Negative Impact of High
Extractivity on Model Performance

A key takeaway from previous sections in this pa-
per is that high dataset extractivity can result in
a tendency to excessively copy text from source
documents while neglecting important content that
should be included in a summary. To address this
issue, a natural solution is to focus the model’s
attention on important content during training to
encourage the model to cover the important content
when copying during inference. To achieve this,
we first identified a mapping between tokens in a
source document X and extractive fragments in
the target summary Y , where extractive fragments
are the set of shared sequences of tokens in X and
Y (Grusky et al., 2018). It should be noted that
extractive fragments comprise all tokens the model
can copy from the source document. Then, a copy
mechanism was implemented (See et al., 2017) and
we transformed the above mapping as the label for
the copy distribution so that the model can attend
to important texts when copying text from source
documents.

4.1 Identifying Important Content to Copy

The process is illustrated in Figure 1. Essentially,
this process was formulated as a simple optimiza-
tion problem, with the goal of using the least num-
ber of sentences in X to cover all extractive frag-
ments. We focused on extractive fragments since
they are the tokens that a model can copy. The
decision to select the least number of sentences in
X was made because we usually require a sum-
mary to be concise, i.e., it would be preferable if
fewer sentences were needed to cover extractive
fragments.

We first converted the extractive fragments into



Figure 1: An example from the CNN/DM dataset that shows how to set up the optimization for identifying important
content to copy. We highlight different fragments with different colors and use squares with the corresponding
colors on the left of the matrix A to represent the bipartite mapping between a fragment and sentences in the source
document. For example, the first row in A means the fragment Sunderland appears in the 1-st and 4-th sentences
in the source document. After solving the optimization problem, the optimal solution x∗ indicates that to cover all
fragments we only need to select the last three sentences.

a bipartite mapping between fragments in the target
summary Y and sentences in the source document
X , and represented the mapping in a binary matrix
A with each row corresponding to a fragment and
each column corresponding to a sentence in X . We
set Aij to 1 if the i-th fragment appears in the
j-th sentence in X , otherwise Aij is set to 0. A
fragment can appear in multiple sentences. Then
we defined a binary vector x of size equal to the
number of sentences in X where each element xi
indicates whether the i-th sentence in X should be
selected. The optimization problem is formalized
as the following integer linear programming (ILP):

minimize
x∈Z

1 · x

subject to Ax ≥ 1,

0 ≤ xi ≤ 1, ∀xi ∈ x.

(1)

In this ILP, 1 means all-one vector, and Z repre-
sents the set of integers. Our objective function
basically counts the number of selected sentences
in the source document X . The first constraint
guarantees that all fragments can be covered and
the second constraint assures that each sentence
can be selected either once or never. We can prove
that this optimization is always feasible. The proof
is included in Appendix Section A.1.

Proposition 1 The optimization problem (1) is al-
ways feasible.

By solving this ILP, the optimal solution x∗ indi-
cates which sentences in X should be selected and

Figure 2: The same example from CNN/DM as used
before, this time to show the gold copied token and silver
copied tokens for the fragment Sunderland , as defined
in Section 4.2. The highlighted Sunderland is its gold
copied token and the tokens highlighted in silver are
its silver copied tokens, including Sunderland .

can be further regarded as important content that a
model should copy.

4.2 Creating Copy Labels
Our next goal is to transform the optimal solu-
tion to the ILP into labels to correct the model’s
copy behaviors. In this context, a source docu-
ment X is considered as a sequence of tokens
{xw1 , xw2 , · · · , xwa } and the target summary Y is
represented as a token sequence {yw1 , yw2 , · · · , ywb }.
Our target copy labels are represented as a matrix
M ∈ Rb×a where Mij indicates the importance
of the source token xwj for the model to copy it in
order to generate the target token ywi .

Given a target token ywi that appears in the ex-



tractive fragment f , we first referred to the optimal
solution x∗ and the bipartite mapping A to find
the selected source sentence xsent

f that covers the
fragment f . We then defined two categories for
source tokens {xw1 , xw2 , · · · , xwa } corresponding to
the target token ywi , as shown in Figure 2.

Gold Copied Tokens We define gold copied
tokens as the source tokens that appear in the
selected sentence xsent

f and also present in the
extractive fragment f . These gold copied to-
kens are the expected source tokens where the
target token ywi should be coped from, based
on the optimal solution x∗.. We used the func-
tion GOLDCOPY(xwj , y

w
i ) to represent whether a

source token xwj is a gold copied token to the target
token ywi , and GOLDCOPY(xwj , y

w
i ) = 1 if it is

otherwise 0.

Silver Copied Tokens We define silver copied
tokens as the source tokens that appear in the
selected sentence xsent

f . Similarly, the function
SILVERCOPY(xwj , y

w
i ) is set to return 1 if xwj is

a silver copied token to the target token ywi other-
wise 0.

Additionally, we initialized M based on the
ROUGE scores R between the two sentences
where xwj and ywi belong, for all source and target
tokens pairs. Basically Rij = ROUGE(xm, yn)
where xwj ∈ xm and ywi ∈ yn. Finally we obtained
the copy labels as follows:

M̃ij =λ1 · GOLDCOPY(xwj , y
w
i )

+ λ2 · SILVERCOPY(xwj , y
w
i ) (2)

+ λ3 ·Rij ,

M =softmax(M̃) (3)

where λ1, λ2 and λ3 are hyper-parameters. Please
note that for target tokens that do not appear in
any fragments, all source tokens are neither their
gold nor silver copied tokens, as there is no way
for the model to generate them via copying. As
we intended to adopt M as the ground truth labels
to guide the model to copy correct content, it is
crucial that the model focuses the most on gold
copied tokens when copying fragments, and then
attend more to the silver copied tokens than the rest
of tokens. Therefore, we set λ1 > λ2 > λ3.

4.3 Training with Copy Mechanism

It has been widely shown that a copy mechanism
can be interpreted as modeling copy distributions.

Numerous previous studies have also demonstrated
the effectiveness of the copy mechanism in abstrac-
tive summarization (See et al., 2017; Xu et al.,
2020; Li et al., 2021). Due to limited space, we
refer readers to See et al. (2017) for more details.
Inspired by their work, we utilized a copy mecha-
nism and took the encoder-decoder attention based
on the last encoder and decoder hidden layers as
the copy distribution:

αij = softmax(
(Wehej)

⊤Wdhdi√
dk

), (4)

where We and Wd are weight matrices for encoder
and decoder hidden states respectively, hej is the j-
th hidden state of the encoder, hdi is the i-th hidden
state of the decoder and dk is the dimension of hid-
den states. Note that for the multi-head attention,
we calculated the copy distributions as the average
of multiple heads. Finally, in order to guide the
model to copy correctly, we adopted an auxiliary
loss function to encourage the consistency between
the overall copy distribution α and the copy labels
M based on the Kullback-Leibler (KL) divergence:

L = − 1

∥Y ∥
∑
i

logP (ywi ) + λKL(α,M), (5)

where P (ywi ) is the likelihood of the target token
ywi , ∥Y ∥ is the length of the target token sequence,
and λ is the hyper-parameter.

4.4 Results and Analysis
We implemented our proposed strategy for mitigat-
ing the extractive-performance trade-off in BART
and refer to that as BART + Copy Labels. We evalu-
ated our method on CNN/DM and arXiv/PubMed.

4.4.1 Results on CNN/DM
Except for BART and PEGASUS, we compared
our method to several competitive baselines that
also use copy mechanism:

• SAGCopy(Xu et al., 2020) fine-tunes MASS
(Song et al., 2019) by incorporating the im-
portance scores for source words into copying
mechanism.

• PALM (Bi et al., 2020) incorporates the copy
mechanism into the pre-training model.

• CoCoNet(Li et al., 2021) enhances the copy-
ing mechanism by encouraging the model to



Model R1 R2 RL

BART† 44.12 21.21 40.86
PEGASUS† 44.15 21.41 41.02
BART + AttnCopy‡ 44.26 21.31 40.98
BART + SAGCopy‡ 44.31 21.35 41.00
PALM‡ 44.30 21.12 41.41
CoCoNet‡ 44.39 21.41 41.05

BART + Copy Labels 45.21 21.83 41.80

Table 3: Experimental results on CNN/DM. † indicates
the results are from our implementation, and ‡ means
the results are taken from the corresponding papers.

Model OE Cont Cont Salience

BART† 94.89 26.92 0.169
PEGASUS† 93.41 22.15 0.171

BART + Copy Labels 95.24 20.23 0.184

Table 4: Extractivity analysis results on CNN/DM. OE
denotes output extractivity

copy the input word that is relevant to the pre-
viously copied one.

From Table 3 we can see that our method has
superior performance compared to other baselines.
We believe this is because our copy labels provide
more effective supervision for the copy distribu-
tion. Additionally, we performed an extractivity
analysis and the results are shown in Table 4. It can
be observed that adding copy mechanism with the
proposed copy labels does not result in significant
changes in the output extractivity, but lowers the
continuity in output summaries. Meanwhile, since
our copy labels encourage the model to focus on
important content when copying from source doc-
uments, the continuity salience of our method is
higher than that of other baselines, which shows
the effectiveness of our method in mitigating the
negative impact of high dataset extractivity. A case
study is shown in Appendix Section A.3.

4.4.2 Results on arXiv/PubMed
We conducted similar evaluations on
arXiv/PubMed, and the results are shown in
Table 5 and Table 6. These results align with the
findings from the CNN/DM evaluations, in that our
copy labels can improve the model’s performance,
as demonstrated by the ROUGE scores. Besides,
the extractivity analysis further supports the
conclusion that our proposed copy labels can guide
the model to copy important content, such as the
increase of continuity salience, which leads to an

Model R1 R2 RL

BART† 45.81 18.15 41.57
PEGASUS† 45.20 18.93 41.83

BART + Copy Labels 45.97 19.04 41.87

Table 5: Experimental results on arXiv/PubMed. †
indicates the results are from our implementation.

Model OE Cont Cont Salience

BART† 88.20 27.00 0.133
PEGASUS† 89.11 26.85 0.144

BART + Copy Labels 88.73 24.12 0.151

Table 6: Extractivity analysis results on arXiv/PubMed.
OE denotes output extractivity

improvement in performance. In summary, our
method is lightweight, as it only involves a copy
mechanism with an auxiliary loss. Furthermore, it
effectively alleviates the harm from high dataset
extractivity and improves model performance.

5 Related Work

Abstractive Summarization Text summariza-
tion can be broadly classified into two categories:
extractive and abstractive, and our work focuses
on abstractive summarization. Recent works in
abstractive summarization have explored various
approaches, such as contrastive learning (Xu et al.,
2022; Liu et al., 2022), offline reinforcement learn-
ing (Pang and He, 2020), and a two-staged frame-
work (Liu and Liu, 2021). Our approach focuses
on characteristics of training datasets and aims to
identify and mitigate negative impact of high ex-
tractivity in training data on model performance,
which can be orthogonal to model structures or
training strategies.

Extractivity in Summarization Bommasani and
Cardie (2020) studied the quality of summarization
datasets and found that a high degree of extractivity
is present in many datasets. As existing datasets
display significant amounts of extractivity, it is nec-
essary to investigate how a model trained on such
data may be influenced by extractivity. Similar to
our approach, Ladhak et al. (2022) examined the
effect of extractivity on the faithfulness of models.
They showed that an increase in extractivity im-
proves the faithfulness of the model but also that
a trade-off exists between abstractivity and faith-
fulness. Our work focuses on the relationship be-
tween dataset extractivity and model performance.



Zhang et al. (2018a) explored the abstractivity of
summarization models and found that abstractive
models exhibit near-extractive behaviors in prac-
tice. However, their analysis is constrained to
CNN/DM dataset, which we also used, and RNN-
based models, whereas our approach extends to
arXiv/PubMed and transformer-based pre-trained
models. Kryściński et al. (2018) proposed methods
to increase abstractivity in the output. Unlike their
work, our work introduces and evaluates a method
to mitigate the negative impacts of high dataset
extractivity on model performance.

6 Conclusion

In this work, we have explored how the amount of
extractivity in summarization training datasets in-
fluences the performance of abstractive models. By
comparing model performance under different lev-
els of dataset extractivity, we showed that low lev-
els of extractivity can improve model performance
while the impact becomes negative as extractiv-
ity is high. Furthermore, with the analysis of the
model’s copy continuity of content, we found that
high dataset extractivity encourages the model to
copy text continuously, which can cause models to
ignore important content. In order to mitigate these
negative effects, we presented a novel, simple, and
effective strategy that creates labels for fixing the
model’s copying behaviors. By training the model
with a copy mechanism and our copy labels, our
experimental results show that our method can ef-
fectively alleviate the harm resulting from dataset
extractivity and outperforms several competitive
baselines.

7 Limitations

Our work has the following limitations. First, our
analysis of continuity and continuity salience only
focused on the sentence level. This is limiting since
actual continuous spans can be a part of tokens in
a identified copied sentence. Besides, we only uti-
lized string-based overlap for salience estimation,
i.e. ROUGE. This can be limiting since semantic
salience may not be captured. Furthermore, even
if our method can alleviate the negative impact of
high dataset extractivity, it may not fully address
this issue. In the future, we plan to extend our anal-
ysis to token-based continuous spans identification
and semantic based measurement for more accurate
continuity quantification.

Ethics Statement

The progress in deep neural network architectures
and the availability of large pre-trained language
models have led to significant advancements with
single document summarization. However, current
state-of-the-art natural language processing (NLP)
solutions still face challenges in consistently gen-
erating factual and faithful summaries without any
instances of hallucination (Maynez et al., 2020).
Therefore, it is imperative to acknowledge that our
proposed solution, like previous approaches, is not
yet suitable for deployment as it does not specifi-
cally address the issue of hallucination. To bridge
this gap, future research efforts should prioritize
the development of more effective evaluation mea-
sures and solutions for text summarization, aiming
to ensure highly faithful summaries that accurately
represent the source content and enhance the over-
all trustworthiness of summarization systems. Ad-
ditionally, in the case of applying the proposed
method to sensitive data domains such as medical
patient records and legal documents, it becomes
essential to incorporate privacy-preserving policies
to safeguard the confidentiality of personal infor-
mation (Da Silva et al., 2006). These measures are
critical to instill confidence in the practical imple-
mentation of text summarization techniques.
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A Appendices

A.1 Proof of Proposition 1
According to the definition of extractive fragments
(Grusky et al., 2018), a fragment must appear in
one of the sentences in a source document, or there
is no overlap between the source document and
the target summary for the fragment. Therefore,
for each row in the matrix A, it must contain at
least one 1 so that the row corresponds to a valid
fragment.

Then by setting x to the all-one vector 1, A · 1
is equivalent to count how many 1 in each row of
A. Since A must contain at least one 1, setting x
to the all-one vector 1 satisfies all constraints and 1
is always a feasible solution to our ILP. Therefore,
the optimization problem 1 is always feasible.

A.2 Implementation Details
Models are implemented by Pytorch framework
(Paszke et al., 2019) and Huggingface transform-
ers (Wolf et al., 2020). We initialized BART with
"facebook/bart-large-cnn" for CNN/DM, and with
"facebook/bart-large" for arXiv/PubMed. As for
PEGASUS, we chose "google/pegasus-large" for
both datasets. We trained the models using Adam
optimization with a learning rate of 5e − 5, and
weight decay of 0.01. The learning rate is updated
using a polynomial decay schedule and warm-up
steps is set to 500. We trained models with 10
epochs and used early stopping with patience 5. All
experiments were performed on NVIDIA GeForce
RTX 3090, and it took about 4 days for 1 epoch
on both datasets. The hyperparameters in Equation
2 are set as λ1 = 5, λ2 = 2, λ3 = 1. λ in Equa-
tion 5 is set to 0.4 in a range [0.3, 0.7] based on
performance on validation sets.

During inference, we used beam search with
a beam size 4, length penalty 2 and non-repeat
n-gram size is set to 3. For evaluation, we used
ROUGE python package3.

A.3 Case Study
We presented generated examples from our model
and BART in Table 7. We highlighted the texts
that BART copied from the source document in
yellow , and we bolded the text that our model

copied. By comparing to the target summary, we
can observe that BART copied longer continuous
spans and the continuous spans contain content that
should not be covered in the target summary, such
as "MacLaren was announced as director of the
movie in November". By contrast, in the output
from out model, it does not cover those texts that
shouldn’t appear in the summary. However, both
BART and our model still fail to generate the im-
portant content about "MacLaren left the project
over "creative differences"". This indicates that
there is still room for improvement in our model.

3https://github.com/google-research/google-
research/tree/master/rouge



Source Document (CNN)Wanted: film director, must be eager to shoot footage of golden
lassos and invisible jets. CNN confirms that Michelle MacLaren is
leaving the upcoming "Wonder Woman" movie (The Hollywood

Reporter first broke the story). MacLaren was announced as director
of the movie in November . CNN obtained a statement from Warner

Bros. Pictures that says, "Given creative differences, Warner Bros. and
Michelle MacLaren have decided not to move forward with plans to
develop and direct ’Wonder Woman’ together." (CNN and Warner Bros.
Pictures are both owned by Time Warner.) The movie, starring Gal
Gadot in the titlerole of the Amazon princess, is still set for release
on June 23, 2017.It’s the first theatrical movie centering around the
most popular female superhero. Gadot will appear beforehand in

"Batman v. Superman: Dawn of Justice," due out March 25, 2016. In
the meantime, Warner will need to find someone new for the director’s
chair.

Target Summary Michelle MacLaren is no longer set to direct the first "Wonder Woman"
theatrical movie. MacLaren left the project over "creative differences".
Movie is currently set for 2017.

BART Output CNN confirms that Michelle MacLaren is leaving the upcoming "Wonder
Woman" movie. MacLaren was announced as director of the movie in
November. The movie, starring Gal Gadot in the title role of the Amazon
princess, is set for release on June 23, 2017. It’s the first movie centering
around the most popular female superhero.

Our Output CNN confirms that Michelle MacLaren is leaving the upcoming "Wonder
Woman" movie. The movie is still set for release on June 23, 2017.

Table 7: Example outputs based on a test instance from CNN/DM


